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Abstract. The self-consistent Hartree–Fock approximation and the deformable jellium model
are used to describe the ground state of the two-dimensional electron gas. Improved precision in
the calculations allows us to confirm the existence of astablecorrugated state at finite densities.
This is strongly corroborated by an extrapolation of our results to the low-density region. A
positive bulk modulus is obtained in this region. A comparison with experimental data for the
melting point and our model calculation is made and agreement is found within a factor of 2.

1. Introduction

The properties of the two-dimensional electron gas (2DEG) have attracted considerable
interest in the past few years [1]. In particular, because the electronic motion in the new
high-temperature superconducting materials occurs mostly in planes, the 2DEG has become
a subject of intensive research, both theoretical and experimental [2]. More relevant for us
is that the studies of two-dimensional (2D) fermion systems are useful for understanding
the surfaces of three-dimensional solids and interfaces of three-dimensional phases [3].
Thus experiments with the 2DEG have produced strong evidence for an electron solid
in the quantum regime even in zero magnetic field [4–6]. Since this transition to the
crystalline phase has been established, it is important to carry out a better determination of
the theoretical conditions under which this crystallization occurs. Most standard studies of
the electron gas assume a simplified model for the neutralizing positive background [7]. A
common approximation is the uniform jellium model (UJ) in which the system of electrons
interacting with each other via the Coulomb potential are immersed in a uniform static
neutralizing positive background. The UJ provides an important theoretical approach which
requires only one input parameter, namely the average electron density in the bulk,rs , to
describe the properties of the 2DEG at zero magnetic field and temperature [8–10].

A different hypothesis for the positive background is the deformable jellium model
(DJ), first introduced by Overhauser [11, 12]. The basic assumption in this model is that
the background is statically deformed in order to get local charge neutrality, simulating
some of the expected properties of the system. Physically, the DJ can be viewed as a way
to incorporate some screening effects [13]. The DJ retains the simplicity of the UJ and the
properties depend only on the Wigner–Seitz parameterrs . It can be argued that the DJ should
be applicable in the low-density region, where the positive-ion repulsion can be neglected

0953-8984/98/040821+12$19.50c© 1998 IOP Publishing Ltd 821



822 M Moreno et al

as for a low-density gas. Calculations of the electron gas at zero magnetic field in the DJ
within the self-consistent Hartree–Fock (HF) approximation show that the electronic part of
the system develops long-range order in the form of electron-density waves (eDW) of the
Wigner type at low densities [12]. An achievement of including the electron gas in the DJ is
the systematic description of the symmetry transition from the homogeneous phase at high
densities into localized states at low densities. The DJ together with the self-consistent HF
approximation have been exploited by us to describe the electron gas [14, 15]. In previous
work the existence of a stable corrugated state was found. However, the limitations of the
calculation for the low-density region,rs > 25, left serious doubts about the nature of the
stability of the corrugated state.

In this work the ground-state properties of the 2DEG in the HF-DJ model are studied
at zero magnetic field. In order to find electron localization, an expansion for the state
function of the type of the eDW is proposed. A considerably reduced matrix is obtained
whensymmetries of the state functioncan be explicitly introduced. This reduction allows us
to deal with a great number of terms in the expansion at a small fraction of the computational
burden. The convergence of the energy is carefully studied as a function of the number of
terms in the expansion at intermediate and low densities. Then an extrapolation is performed
to very low densities (large values ofrs), and the existence of a stable localized state at
finite densities is confirmed for the paramagnetic and the ferromagnetic phases. Positive
pressure and bulk modulus are obtained for this region. The electron densityρ(rs) for two
different rs-values is calculated. We compare our results with other model predictions and
also with the zero-magnetic-field experiments on the Wigner crystal melting point. Atomic
units are used throughout this work, with the energy in rydbergs.

2. The model

Let us consider a system ofN fermions interacting via a Coulomb potentialV̂ (rij ) = e2/rij
with rij = |ri−rj |, immersed in a positive background of areaA. When the thermodynamic
limit is considered,N →∞ andA→∞ with σ = N/A constant.

The HF Hamiltonian of the electron gas in jellium has the terms

ĤHF =
N∑
i=1

p̂2
i

2me
+ V̂D + V̂ex + V̂bb + V̂be (1)

where the subscriptse and b refer to electron and background, respectively, andV̂D and
V̂ex are the direct and exchange terms of the electron–electron interaction respectively.

The deformable jellium is defined by the condition [16, 13, 17]

〈V̂D〉 + 〈V̂bb〉 + 〈V̂be〉 = 0 (2)

where the symbol〈 〉 means the expectation value with respect to the ground state. This
condition means that the positive background is statically deformed in order to achieve local
charge neutrality of the system; in the independent-particle approximation the background
density follows the electron density. In order to evaluate the energy, we are left just with
the electronic kinetic and the exchange energy terms.

The trial functions in the Fock space are taken to be

8i =
M∑
j=0

Cij φj . (3)
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If due to some symmetries of the basis andthe physical state(not necessarily of the
Hamiltonian), the indexj can be separated into two or more different indices that can
be summed independently, i.e.j = (L,N), then equation (3) can be rewritten as

8i =
L∑
L=0

N∑
N=0

CiL,NφL,N =
L∑
L=0

CiL,N0

{
N∑
N=0

CiL,N

CiL,N0

φL,N

}
where the factorCiL,N/C

i
L,N0
≡ bL,N is usually independent of the parameterrs .

From the orthonormality of the orbitals,〈
N∑
N=0

bL,NφL,N

∣∣∣∣ N∑
N ′=0

bL,N ′φL,N ′

〉
=

N∑
N=0

|bL,N |2 = N 2
L.

Using the above results, the reduced equation for the orbitals is

8i =
L∑
L=0

[
CiL,N0

NL
] [ 1

NL

N∑
N=0

bL,NφL,N

]
=

L∑
L=0

CiL,N0
�L. (4)

In equation (4) the sum over the indexN can be independently evaluated for each value of
L. We haveCiL,N0

= CiL,N0
NL and

�L = 1

NL

N∑
N=0

bL,NφL,N .

Then using equation (4) for the expansion of the orbitals, the number of terms in the sum
over L is considerably reduced with respect to the initial sum in equation (3). Therefore
the number of independent coefficients to be evaluated, and the dimensions of the matrices
involved in the calculations are significantly diminished. The price of this reduction in the
matrix dimensionality is an increase in the complexity of the matrix elements. However,
this complexity can be controlled by taking advantage of symmetry properties of the
matrix elements when the summation over the indexN is performed. In that way the
calculations with the expansion given by equation (4) are simpler and more economic for
given computational resources. This procedure amounts to a change of the variational
basis, from8 to� orbitals; the conditions that it imposes imply in general that some of the
excited electronic states with different orbital symmetries are excluded from the variational
calculation. Because in this work we are interested in the ground state, this constraint is
not relevant.

The above discussion is illustrated now with the selection of the orbitals in this work.
The expansion proposed is given in terms of a set of modulating functions that contain as
a possible solution the trivial plane wave (PW). The general form is given by

8k(r) = exp(ik · r)√
A

N∑
nx=−N

N∑
ny=−N

C ′nx,ny [exp(iq0nxx) exp(iq0nyy)]. (5)

A is the area in which the periodic boundary conditions are imposed,k = îkx + ĵky , and
r = îx + ĵy. The coefficientsC ′nx,ny in the expansion, assumed to be independent ofk,
are self-consistently determined. The minimal modulating frequencyq0 = 2kF with kF the
Fermi momentum, is obtained via the orthonormality condition for the orbitals. The term
with nx = ny = 0 is the PW solution. The number of terms in the expansion for the state
function is(2N + 1)2.
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Because the coefficients in the expansion for the ground-state equation (5) satisfy the
propertyC ′nx,ny = C ′−nx,ny = C ′nx,−ny = C ′−nx,−ny , the expansion of the state function can be
written in terms of a cosine series as

8k(r) = exp(ik · r)√
A

N∑
nx=0

N∑
ny=0

C ′′nx,ny [cos(q0nxx) cos(q0nyy)]. (6)

The number of terms in the above expansion is(N +1)2. Then summing over the negative
values of the indices is not necessary with the use of the new functions. If now the
equivalence of the directionsx andy for the ground stateis taken into account, expansion
(6) can be further simplified to

8k(r) = exp(ik · r)√
A

N∑
nx=0

nx∑
ny=0

Cnx,nyPnx,ny [cos(q0nxx) cos(q0nyy)] (7)

wherePnx,ny is an operator that sums all the permutations of the subscriptsnx andny . The
number of terms in the expansion for the state function is now(N + 1)(N + 2)/2, which is
considerably reduced with respect to the first two expansions. This reduction in the size of
the matrices for a givenN allows us to increase the value of the upper limit in equation (7),
and improve the energy results, widening thers-region over which convergence is obtained.
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Figure 1. Calculated values of the paramagnetic energy per particle as a function of
the Wigner–Seitz parameter,rs , for the 2D electron gas. The curves correspond to
N = 0, 4, 8, 12, 16, 20, 24, 28 from top to bottom. Discrete points correspond to several
extrapolations; smaller values come from non-optimized fits.

The energies of the paramagnetic and the ferromagnetic states are evaluated and
compared in order to determine the magnetic character of the ground state. The paramagnetic
state is a Slater determinant with the functions given by equation (7). In this case each one-
electron state with wave vectork within a Fermicircle of radiuskF has double occupancy
because we have both spin states, soN =∑k,λ nk,λ with nk = 2(kF − k) where2 is the
step function. In the fully polarized ferromagnetic system, each orbital within a circle of
radius

√
2kF is singly occupied. The ferromagnetic system is an example of anomalous

occupancy in spin space characterized byN = ∑k,λ nk,λ1 with nk = 2(
√

2kF − k). Then

the Fermi circle radius iskF in the paramagnetic case and
√

2kF in the ferromagnetic one.
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Because the DJ depends on a single parameter, a simple rescaling relates the paramagnetic
and ferromagnetic states.

In the calculation of the energy, the sums are over occupied states, and we use a
Fermi circle (disc) occupation approximation. This approximation will induce a fractional
occupancy per peak in the corrugated state. A more refined and conceivably better ground
state can be obtained if the disc approximation is not used. In the low-density region where
the energy is proportional to the Fermi momentum, one expects a correction of the order of
10% or 1−√(π)/2.

3. Results and discussion

In order to obtain solutions independent ofN , calculations were carried out for the electron
gas with the expansions for the ground-state function withN up to 28. The largest matrices
that we have to deal with in the basis of equation (7) are of dimension 435. The coefficients
Cn were self-consistently determined with an accuracy of 10−5 with respect to the last
iteration. The paramagnetic results are now discussed. The ferromagnetic energies are
obtained with the replacement ofrs by

√
2rs . The paramagnetic phase energy per particle

is displayed in figure 1 in terms ofrs . The curves are for different values ofN , from
N = 0 for the top curve, in steps of1N = 4, up toN = 28 for the bottom curve.
Discrete points correspond to several extrapolations. The curve withN = 0 gives the PW
behaviour; in this case the DJ reduces to the UJ. At high densities the paramagnetic HF
state of the 2D electron gas is the PW up torsc = 4.8. At this point a symmetry transition
from a homogeneous to a localized state occurs. At intermediate and low densities where
the transition to the eDW has occurred, the DJ energy of the system with localized solutions
is lower than the energy obtained with the UJ and correlated state functions [8].

Table 1. Computed values of the energy per particle for the 2DEG in the paramagnetic phase as
a function of the Wigner–Seitz parameter and the number of functions,N , in each physical
direction. The last column shows the results of non-linear extrapolations in terms of the
parameterN ; the numbers in parentheses are estimates of the extrapolation precision in the
last significant figure.

N

rs 16 18 20 22 24 26 28 Extrapolation

10 −0.238 21 −0.238 21 −0.238 21 −0.238 21 −0.238 21 −0.238 21 −0.238 21 −0.2382
20 −0.248 09 −0.248 10 −0.248 10 −0.248 10 −0.248 10 −0.248 10 −0.248 10 −0.2481
30 −0.247 88 −0.248 93 −0.249 36 −0.249 52 −0.249 51 −0.249 51 −0.249 51 −0.2495
40 −0.240 85 −0.244 80 −0.247 17 −0.248 52 −0.249 24 −0.249 60 −0.249 75 −0.2498(1)
50 −0.228 90 −0.235 80 −0.240 71 −0.244 10 −0.246 36 −0.247 81 −0.248 71 −0.2494(2)
60 −0.215 10 −0.224 14 −0.231 17 −0.236 54 −0.240 56 −0.243 50 −0.245 61 −0.2484(4)
80 −0.188 30 −0.199 47 −0.208 95 −0.216 94 −0.223 61 −0.229 13 −0.233 66 −0.2439(6)

100 −0.165 56 −0.177 27 −0.187 64 −0.196 79 −0.204 83 −0.211 85 −0.217 96 −0.2359(7)

The value of the parameterrsc at which the solutions transform from eDW to PW will
be taken as the melting point. The criterion is similar to that given in reference [10] where
the authors consider a charge-density wave instead of close-packed structure. In the present
work, the melting point occurs atrsc = 4.8 for the paramagnetic gas, while the scaled value
rsc = 6.8 is obtained for ferromagnetic systems. The transition at this point corresponds to
a discontinuity in the density, just as in the 3D case; in this sense a first-order transition is
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(a)

(b)

Figure 2. The electron density normalized to the PW density. (a) Forrs close to the transition;
rs = 4.8 for the paramagnetic andrs = 6.8 for the ferromagnetic phase. (b) Far from the
transition; atrs = 25 andrs = 35.3 for the paramagnetic and ferromagnetic phases respectively.
Notice the change in the vertical scale and the implicit change in the horizontal scale. Horizontal
peaks are separated by 2.23rs .

(This figure can be viewed in colour in the electronic version of the article; see
http://www.iop.org)

obtained using the approximations of this work. The electron density normalized to the PW
densityρ(rs)/ρPW (rs) in terms of the parameterrs is shown in figure 2. Twors-values are
chosen; the first is near the melting points where the electron density is slightly localized,
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and the second is at largers-values where, according to the Wigner hypothesis [18], the
electron density is very pronounced. In figure 2(a),rsc = 4.8 for the paramagnetic system
and rsc = 6.8 for the ferromagnetic one. In figure 2(b),rs = 25 for the paramagnetic and
rs = 35.3 for the fully polarized system. The period of the electron density along the axes
of corrugation isL = 2.23rs for the 2D system, as compared with the period for the electron
density, obtained in a previous work [19] for the 3D system, ofL3D = 1.63rs .

3.1. The stable localized state

For the expansions used in this work withN = 28, good convergence in the paramagnetic
state energy is obtained forrs-values up to 44. An interesting feature of theN = 28 curve
is the apparent minimum in the low-densities region, atrs ≈ 43. A careful assessment
of the existence of this minimum (region of stability) is necessary because of the slow
convergence of the series in equation (7). In order to study the behaviour of the energy
curve in the region of stability, it is mandatory to achieve convergence in the ground-state
energy value over a wider interval of densities. In table 1 the paramagnetic state energy
per particle, as a function ofrs andN , is given. As this table shows, the convergence in
energy becomes slower whenrs increases, and a greater number of terms are required in
the state function. Therefore we have not reached a direct conclusion about the behaviour
of the energy curve at low densities (rs > 44). This problem might be solved if we could
have a greater number of terms in the state function, or if we could obtain the limit at low
densities in an alternative way. Due to the great computational cost of the first alternative,
we are forced to adopt the second one.

0 5 10 15 20 25 30
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-0.1

-0.05
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Figure 3. A fit of the calculated data for the electron gas system. The functional form of
equation (8) has been used. The curves correspond tors = 20, 30, 40, 50, 60, 80, 100, the upper
curves at lowN corresponding to largerrs .

We have studied in detail the convergence of the computation. At fixedrs , we obtain a
functional of the form

E(N ) = E(N0) exp

(∫ N
N0

exp(pr(x)) dx

)
(8)
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where pr is a polynomial of degreer with adjustable coefficients. This form gives a
very good fit [20] for the range ofN -values from 0 to 28 with a polynomialpr of order
r = 3. Polynomial forms of smaller degrees tend to give less good fits, and higher-degree
polynomials give negligible corrections. Because the fits are used to extrapolate to large
N we have given large weights, of order 300, to the data forN > 20 as compared to the
data for the low values,N 6 8; the size of the weights is comparable to the number of
orbitals for a givenN . A numerical estimate of the goodness of the fit is obtained from
its χ2-values; typical values ofχ2 vary between 10−7 for low rs and 10−5 for rs > 60.
In figure 3 one such fit is shown for the paramagnetic phase; on the basis of the fits an
extrapolation to largeN was carried out. The results of the extrapolations are given in
figure 1. All of the extrapolations that we have tried indicate the existence of a minimum in
the paramagnetic phase in the region 38< rs < 48. The extrapolated energy per particle is
very close to−0.25 Ryd at the minimum. For the ferromagnetic phase, equivalent results
are obtained in the scaled region 54< rs < 68.

A many-body physical system such as the electron plus the background that we are
considering has many modes of oscillation around its ground state. Some of them are
density fluctuation modes; one can distinguish two classes of density fluctuation: the first
are the charge-density fluctuations, while the second are neutral-density oscillations. Among
the charge-density fluctuations we have electron-density fluctuations which go beyond the
HF approximation, and, also, background charge fluctuations which correspond to phononic
modes in the DJ. The charge-separating modes are expected to have relatively large energies
as compared to the neutral-charge oscillations due to the dipole energies that they generate.
The size of the neutral modes can be estimated within the DJ from theE/N versusrs
curves, in close analogy with the Born–Oppenheimer procedure for molecular vibrational
modes.

The energy per particle depends on a single parameterrs , which determines the electron
and background density. A simple harmonic calculation of the energy levels of oscillation
around the minimum can be performed. Because the ferromagnetic energy has a lower
degree of dependence onrs than the paramagnetic phase, the elastic energy is smaller for
the ferromagnetic than for the paramagnetic case. Let us discuss the paramagnetic case.
The energy curve has two minima—one in the high-density region where the well known
PW is the HF-DJ solution, and the second in the intermediate-density region, atrs ≈ 43,
where the DJ has the eDW as the HF state function. We have a harmonic potential, so
we ask what object oscillates in it. We assume that it will be a neutral atom. In order to
get an upper bound for the correction, we assume the mass of the lightest atom, hydrogen.
The vibrational energies of other atoms will scale as 1/

√
A, with A the mass number. The

excitation energies around the high-density minimum are1E(rs ≈ 1.66) = 0.9×10−2 Ryd,
and around the low-density minimum1E(rs ≈ 43) = 0.9×10−4 Ryd. One notices that1E
at low densities is much lower than the high-density value; therefore a negligible zero-point
energy correction, less than 0.1%, to the low-density curve is expected from this effect.
Therefore the 2D metastable localized state is stable against these deformations.

There are other criteria for stability, which are related to the behaviour of the pressure
and bulk modulus [22]. The pressure depends on the negative of the first derivative of the
energy:

p = − 1

8π

dε

drs

where ε is E/N . Beginning at the melting point and extending up tors ≈ 43 in the
paramagnetic phase and up tors ≈ 61 in the ferromagnetic phase, we have a region of
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positive pressure. The bulk modulus or inverse compressibility is given by

B = 1/κ = 1

16π

[
d2ε

dr2
s

− 1

rs

dε

drs

]
in the 2D case. At intermediate and low densities, the bulk modulus in our model is positive
from the melting point up to densities ofrs ≈ 80 andrs ≈ 115 for the paramagnetic and
ferromagnetic phases respectively. The high-density region where the PW is the HF-DJ
ground state is well known. Notice that these properties depend only on the parameterrs ,
retaining the simplicity of the jellium model.
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Figure 4. The ground-state energy per particle for the 2DEG in terms ofrs . The results with
N = 28 were obtained at intermediate densities, and the extrapolated ones were obtained at low
densities. The dashed curves are the paramagnetic phase energies and the continuous curves
correspond to the ferromagnetic ones. Fromrs ≈ 2 up torst1 ≈ 6.6 the FPW solutions are the
DJ ground state. Fromrs ≈ 6.6 up torst1 ≈ 42 a paramagnetic localized state is predicted. At
rst2 = 42 the electron gas exhibits a transition to a ferromagnetic localized configuration.

3.2. The ground state of the 2DEG

In figure 4 theN = 28 paramagnetic and ferromagnetic energies as functions ofrs are shown
in order to display the magnetic character of the ground state for the 2D electron gas system.
The dashed curves are for the paramagnetic phase energy, and the continuous curves are for
the ferromagnetic one. The small-dashed curve represents the extrapolated paramagnetic
energy, and the large-dashed curve represents the non-magnetic energy evaluated with the
state function withN = 28. These two curves separate atrs > 44. The thick continuous
curve gives the HF ferromagnetic energies, and atrs > 65 it separates from the thin
continuous curve which represents the extrapolated ferromagnetic energy. As the transition
from the paramagnetic PW (PPW) to the ferromagnetic PW (FPW) is well known, we
will not discuss it. Fromrs ≈ 2 up to rst1 ≈ 6.6 the FPW solution is the HF ground
state of the 2D electron gas in the DJ. At this point a magnetic and symmetry transition
to a paramagnetic localized state is predicted. In this phase a positive-pressure region is
obtained up tors ≈ 43. Then atrst2 = 42 the electron gas undergoes a magnetic transition
to a ferromagnetic localized configuration, and a new positive-pressure region is observed
in this phase up tors ≈ 61. Thanks to the improved basis and the extrapolated results,
the value for the latter transition point is better determined than in previous work [15].
As the extrapolation shows, at very low densities the ground state is a Wigner crystal in
the ferromagnetic phase; a similar result was obtained for the 3D electron gas in the DJ
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model [14]. While in reference [9] the paramagnetic state has the lowest energy at all
densities, in reference [8] the ferromagnetic state has lower energy than the paramagnetic
state at low densities (rst > 40), as in the present work (rst > 42). Once the transition to
the eDW has happened (atrst1), the pressure is positive fromrs ≈ 6.6 up to rs ≈ 61. The
bulk modulus remains positive fromrs ≈ 6.6 up to larger values,rs ≈ 115.

The ground state’s melting point in this work isrst1 ≈ 6.6. In reference [21] the authors
find that the Wigner lattice becomes unstable due to quantum fluctuations atrsc < 5.57,
whereupon the instability is triggered by dislocations; this result is very close to ours. Also
interesting is the result in reference [17] where the authors getrsc ≈ 8 as the transition point
at which the crystalline-state energies are lower than the gaseous-state energies. Notice that
the energy per particle in the corrugated region, obtained with variational Wannier functions
in terms of Gaussian orbitals, is a constant for this calculation [17], and is higher than our
calculated result. The latter transition values are significantly smaller than the results for the
2D electron gas obtained using the density functional method, wherersc ≈ 18, as reported
in reference [10], and using the GFMC method, in the UJ [8], wherersc ≈ 37.

One must be cautious in comparing the UJ or the DJ with experiments. The reason
for this is that in the experimental set-up the background is spatially separated from the
electronic charges. However, the substrate into which the electronic charge is deposited is
expected to react. In the case of a ‘metallic’ substrate, one expects image charges to develop,
simulating the DJ model background deformation; in the case of a dielectric substrate, at
least some polarization must occur, and one would expect a situation intermediate between
the UJ and the DJ to be physically adequate.

In order to make a comparison with available experimental data, one must take into
account effects beyond the HF approximation. A minimal correction that fits naturally in
the jellium models is that of modifying the mass into an effective-mass term,m∗, and taking
into account electron-charge-screening effects via a dielectric constant,ε. Notice that the
effective mass and the dielectric constant introduced constitute the static approximation to
many-body effects that are independent of the DJ model. In terms of diagrams,m∗ and ε
come from the self-electron-mass andphoton-mass corrections, respectively. The UJ and
DJ depend on a single dimensionless parameter,rs . Thus physical measures like the energy
and the Bohr radius are simply rescaled in terms of the effective electron mass and the
dielectric constant. These particular rescalings areE∗B = (m∗/εm)EB with EB = e2/2a0

anda∗0 = (εm/m∗)a0 wherea0 = h̄2/me2. Using these equations we can immediately relate
the present work to experimental data, and compare its predictions with other theoretical
models on the Wigner crystallization. In the case of the Si MOSFET, an electron crystal
can be formed under quantum-mechanical conditions even atzero magnetic field(magnetic
fields so weak that the Landau levels are not resolved). Taking the valuesm∗ = 0.2 and
ε = 7.8, one gets a density for the transition to the localized phase of the ground state of
nDJ = 1.92×1011 cm−2. Then the DJ melting density for Si inversion layers is of the same
order of magnitude as the observed experimental transitionsnSi ≈ 1011 cm−2 [4], which
is a remarkable result for a DJ approach. Additional correlation effects beyond the static
approximation could possibly improve the agreement with experiment, because the phase
transition points are expected to change.

4. Conclusions

Ground-state properties of the 2DEG at zero magnetic field have been obtained by means
of HF-DJ self-consistent calculations. This method describes the high-, intermediate-, and
low-density regions in a unified fashion. A technique that exploits the symmetries of the
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ground-state wave function was applied. This technique allows a considerable size reduction
of the Hamiltonian matrix to be achieved, and dramatically improves the reliability, the
convergence, and the computational time required for the calculation. Despite all this, in the
low-density region abovers = 62, convergence could not be obtained, and an extrapolation
of the energy results has been carried out. This extrapolation gives reasonable control of
the low-density results. The functional form in equation (8) of the extrapolation gives an
extremely good fit to the data once a non-linear functional is selected. This functional form
itself recalls those obtained using the renormalization group in many-body theory. The most
interesting result is the existence of the stability regions obtained for the energy curve for
the 2D electron gas. On the basis of the extrapolation method, two minima are expected in
the energy curve at low densities: atrs ≈ 43 in the localized paramagnetic phase, and at
rs ≈ 61 in the localized ferromagnetic one. Thus two metastable states have been found.
In principle, they provide a starting point for more sophisticated calculations.

The theoretical value of the ground state’s melting point for the Wigner crystal in this
work, rs = 6.6, is of the same order of magnitude as the transition values obtained using
other models. With the appropriate dielectric constant and effective mass, the melting
transition of Si inversion layers is obtained in the order of magnitude of the experimental
results. We think that taking into account correlation effects beyond the static approximation
will move the melting point to largerrs-values, or equivalently to smaller density values,
which will give better agreement with experiment.

The expansion for the state function proposed in this work is such that the system can
present an electron density centred around a square lattice. Once the symmetry of the basis
is chosen, theN →∞ basis is complete for the ground state. That the odd (sine) part of
the Fourier series does not contribute has been checked up toN ≈ 10. Other lattices can
be obtained by the usual modification of the Brillouin-zone geometry. Although in the 2D
system one expects that the hexagonal lattice will be the most favourable energetically, we
obtain that, even for the square lattice, the DJ gives a lower energy (a more stable system)
than the corresponding UJ calculations which include correlations. This fact suggests that
important background effects might have been underestimated in the UJ. The DJ calculations
suggest that a large deviation of the UJ might be favoured at intermediate and low densities.
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